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Abstract

The goal of this experiment is to determine the dependency of the
complex dielectric constant of tert-Butyl chloride on the temperature.
To get tert-Butyl chloride into the temperature range of −70 to
−50◦C, where the substance shows interesting behaviour, a cooling
bath consisting of dry ice and acetone is needed. The complex
dielectric constant or permitivity can be calculated by measuring
the standing wave pattern of microwaves inside a waveguide with a
thin layer of tert-Butyl chloride on one end.
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1 Introduction

The static dielectric constant of a material is usually measured with a capacitor
using this material as a dielectric. However, when using electromagentic waves, the
dielectric properties of materials can change. In fact, the (complex) dielectric constant
of any material depends on many parameters, most importantly the frequency and
the temperature. When measuring the dielectric properties of a material at high
frequencies, another method than a capacitor is needed. In this case we are using a
klystron to generate microwaves and put them into a rectangular waveguide. On the
other side of the waveguide there is a layer of the material which is terminated by a
short circuit. To calculate the dielectric constant we have to measure the standing
wave pattern inside the waveguide with a movable probe. In this experiment we’ll
use tert-Butyl chloride, a flammable substance with a melting point of −26◦C. At
the wavelength of microwaves the dielectric constant of it shows a sudden increase
when warmed up to about −60◦C. Therefore we’re going to cool the substance down
to −70◦C, let the temperature slowly increase and do the measurements.

2 Theory

The electromagnetic waves in this experiment are propagating in a rectangular
metallic conductor. We are going to take a closer look at at this propagation by
solving Maxwell’s equations in a rectangular waveguide (assuming there is a vacuum
in the waveguide, i.e. no charges or currents):

div ~E = 0 rot ~E = −µ
∂ ~H

∂t

div ~H = 0 rot ~H = ε
∂ ~E

∂t

Electromagnetic Waves

In this experiment, the emitter of the microwaves produces a sinusoidal wave, therefore
the field A(x, y, z, t) also has a sine-shaped time dependence, which can be separated
in the following way:

A(x, y, z, t) = A(x, y, z) · eiωt (1)

The wave can now be separated in its real and imaginary part, both have to fulfill
Maxwell’s equations.

Using ~H(~r, t) = ~H(~r)eiωt and Maxwell’s equations we can write:

~∇× ~E =− iωµ ~H

~∇× ~H =iωǫ ~E
(2)
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Thus, since ~∇× (~∇× ~V ) = ~∇ · (~∇ · ~V )− ~∇2~V holds and the divergence of ~E and ~H
vanishes, it follows:

~∇2 ~E =− ω2µǫ ~E

~∇2 ~H =− ω2µǫ ~H
(3)

Now we take a look at differential equations for the z-components of ~E and ~H:

By using an ansatz of separation Ez(~r, t) = X(x)Y (y)Z(z)eiωt one gets:

X ′′

X
+

Y ′′

Y
+

Z ′′

Z
= −ω2µǫ (4)

The three summands are independent, therefore they have to be constant individualy:

X ′′

X
= c1;

Y ′′

Y
= c2;

Z ′′

Z
= c3 (5)

Waveguide

Now we are solving these differential equations in the rectangular waveguide of this
experiment. We label the axis as follows:

a

b

x

y

z

Figure 1: waveguide and choice of coordinate system

From experiments it is known that the wave propagation along the z-axis is given by

~E ∝ ei(ωt−kz); k =
2π

λg

(6)

Hence
Z(z) = γeikz (7)
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In x and y direction the surface of the waveguide gives some boundary conditions for
the electric field (the waveguide is assumed to be a perfect conductor, therefore the

tangential component of ~E has to vanish on the surface of the waveguide):

X(0) = X(a) = 0

Y (0) = Y (b) = 0
(8)

Thus
X(x) = α sin

(mπ

a
x
)

(9)

Y (y) = β sin
(nπ

b
x
)

(10)

with m,n ∈ N0. Putting equation (9) and (10) into the ansatz one gets for the
electric field (and analogous for the magnetic field):

Ez = E0 sin
(mπ

a
x
)

sin
(nπ

b
y
)

ei(ωt−kz) (11)

where E0 is the product of all the constants from the previous equations. For Hz we
choose the same ansatz and we will come back to this later when we calculated the
boundary conditions for the magnetic field:

Hz = H0X̃(x)Ỹ (y)ei(ωt−kz) (12)

Now we start with the components of equation (2):

∂Ez

∂y
− ∂Ey

∂z
= −iωµHx

∂Hz

∂y
− ∂Hy

∂z
= iωεEx

∂Ex

∂z
− ∂Ez

∂x
= −iωµHy

∂Hx

∂z
− ∂Hz

∂x
= iωεEy

∂Ey

∂x
− ∂Ex

∂y
= −iωµHz

∂Hy

∂x
− ∂Hx

∂y
= iωεEz

In a plane of constant z the complex field components in x and y direction should
be in phase, i.e. we need A(x, y, z, t) = A(x, y) · ei(ωt−kz). Hence

∂Ez

∂y
+ ikEy = −iωµHx

∂Hz

∂y
+ ikHy = iωεEx

ikEx −
∂Ez

∂x
= −iωµHy − ikHx −

∂Hz

∂x
= iωεEy

Solving these equations for Ex, Ey, Hx and Hy yields

Ex =
−i

ω2µε− k2

(

k
∂Ez

∂x
+ ωµ

∂Hz

∂y

)

(13)

Ey =
−i

ω2µε− k2

(

k
∂Ez

∂y
− ωµ

∂Hz

∂x

)

(14)
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Hx =
−i

ω2µε− k2

(

−ωε
∂Ez

∂y
+ k

∂Hz

∂x

)

(15)

Hy =
−i

ω2µε− k2

(

ωε
∂Ez

∂x
+ k

∂Hz

∂y

)

(16)

From these equations we can see that the transverse components of both the electric
and the magnetic field can be determined from only the axial components (Ez and
Hz).

TEM-waves

We can find 2 special types of waves, transverse magnetic and transverse electrical
waves

(a) TE-mode: Ez ≡ 0

(b) TM-mode: Hz ≡ 0

(c) TEM-mode: Ez ≡ 0 and Hz ≡ 0

First we take a look at the TE-mode where Ez ≡ 0. The normal component of ~E has
to vanish at the surface of the metal, therefore we can find new boundary conditions
for ~H by using equation (13) and (14):

∂Hz

∂y
(x, 0, z, t) = 0

∂Hz

∂x
(0, y, z, t) = 0

∂Hz

∂y
(x, b, z, t) = 0

∂Hz

∂x
(a, y, z, t) = 0

With these boundary condition we can find Hz analogously to Ez. This allows us to
write down the general form of the TE-wave:

Ex =
iH0ωµ

ω2µε− k2

nπ

b
cos

(mπ

a
x
)

sin
(nπ

b
y
)

ei(ωt−kz) (17)

Ey =
−iH0ωµ

ω2µε− k2

mπ

a
sin

(mπ

a
x
)

cos
(nπ

b
y
)

ei(ωt−kz) (18)

Ez ≡ 0 (19)

Hx =
iH0k

ω2µε− k2

mπ

a
sin

(mπ

a
x
)

cos
(nπ

b
y
)

ei(ωt−kz) (20)

Hy =
iH0k

ω2µε− k2

nπ

b
cos

(mπ

a
x
)

sin
(nπ

b
y
)

ei(ωt−kz) (21)

Hz = H0 cos
(mπ

a
x
)

cos
(nπ

b
y
)

ei(ωt−kz) (22)

Plugging this into equation (3) yields

−
(mπ

a

)2

−
(nπ

b

)2

− k2 = −ω2µε
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⇒ k2 = ω2µε−
(mπ

a

)2

−
(nπ

b

)2

(23)

For a wave to propagate we need k to be real, i.e. for a given a, b, µ and ε there is a
cutoff frequency fc for each mode (m,n)

fc =
ω

2π
=

1

2π
√
µε

√

(mπ

a

)2

+
(nπ

b

)2

(24)

In this experiment we are using a waveguide with a = 2.28 cm and b = 1.02 cm (with
µ = ε = 1):

Table 1: cutoff frequencies for modes (m,n)

m n fc(GHz)

1 0 6.6
2 0 13.1
0 1 14.8
1 1 16.2

The Klystron in this experiment produces microwaves with a frequency of f ≈
10.2GHz, that means that only one mode (m = 1, n = 0) is allowed. Therefore the
wave has the following form:

Ex ≡0 Hx =
iH0ka

π
sin

(π

a
x
)

ei(ωt−kz)

Ey =
−iH0ωµa

π
sin

(π

a
x
)

ei(ωt−kz) Hy ≡ 0

Ez ≡0 Hz = H0 cos
(π

a
x
)

ei(ωt−kz)

(25)

Damped Wave

In this experiment the electromagentic waves have to travel through a medium with
a complex dielectric constant and therefore get damped. To describe the motion of
the wave through a medium we use the ansatz:

Z(z) = γe−ik1ze−k2z = γe−iKz (26)

where K = k1 − ik2. Since we assume µ = 1 for the materials we are using in this
experiment, we can see from equation 23 that now ε has to have both a real and a
complex part:

ε = ε1 − iε2 (27)
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Plugging ε and K into equation 23 we get

k2
1 − k2

2 =ω2µε1 −
(mπ

a

)2

−
(nπ

b

)2

2k1k2 =ω2µε2

(28)

For simplicity, we introduce the relative dielectric constant εr

ε = ε0 · εr εr =
ε1
ε0

− i
ε2
ε0

(29)

where ε0 = 8.85 · 10−12AsV−1m−1. Further we introduce the wavelength λg in the
waveguide

λg =
2π

k
(30)

which is measured in the air-filled part of the waveguide where we assume k to be
real (no attenuation).

Reflection and Standing Waves

In this experiment we are using a waveguide which is terminated by a short circuit.
In the second part we place a medium in front of that short circuit. The following
figure shows the conditions:

Ey(z)

z 0

Ey(z)

z 0

medium

d

∆z

Figure 2: terminated waveguide with and without medium

We are going to call the area without medium I, the part of the waveguide with
medium II. The electric and magnetic fields in this scenario can be obtained by
taking the superposition of the incoming and the reflected wave.

In area I:

Ey =− iH0ωµI

a

π
sin

(π

a
x
)

(

e−ikIz +ReikIz
)

eiωt

Hx = iH0kI
a

π
sin

(π

a
x
)

(

e−ikIz −ReikIz
)

eiωt
(31)
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where R = |R|eiδ and the index I or II specifices the area.

In area II:

Ey =− iH ′
0ωµII

a

π
sin

(π

a
x
)

(

e−ikIIz − e−ikIIdeikII(z−d)
)

eiωt

Hx = iH ′
0kII

a

π
sin

(π

a
x
)

(

e−ikIIz + e−ikIIdeikII(z−d)
)

eiωt
(32)

At the interface we have the following continuity conditions for the transverse and
normal components of the electromagnetic field:

EI,t =EII,t

HI,t =HII,t

(33)

Since x and y are both tangential to the direction of propagation, for z = 0 we can
find the following relations:

µIH0(1 +R) =µIIH
′
0

(

1− e−i2kIId
)

kIH0(1−R) =kIIH
′
0

(

1 + e−ikIId
) (34)

For air and non-magnetic materials we can approximate µI ≈ 1 ≈ µII and since the
dampening of the wave in air is neglectable we have kI ∈ R. Hence:

−i

kId

1 +R

1−R
=

tanh(ikIId)

ikIId
(35)

In the analysis of the experiment we will use this trancendent equation to find kII .

VSWR and ∆z

The diode in the slotted line of this experiment measures a quadratic signal of the
standing wave, i.e. Ey(z)

2. For a terminated circuit without a dielectric, we have:

Ey(z) = E0e
iωt

(

e−ikz + eikz
)

⇒ E2
y(z) = 4E2

0 sin
2(kz)

(36)

Now with a dielectric medium in the waveguide, the reflected wave is attenuated (no
total destructive interference) and therefore the value at the minima of the standing
wave is not zero! Also note that the minima get displaced by ∆z (see fig. 2) against
the positions without a dielectric. With the following notation for the complex
reflection coefficient R = |R|eiδ we have:

Ey(z) = E0e
iωt

(

e−ikz + |R|eiδ+ikz
)

⇒ E2
y(z) = E2

0

(

1 + |R|2 + 2|R| cos(2kz + δ)
) (37)

Thus

Emin =(1− |R|)E0

Emax =(1 + |R|)E0

(38)
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We now introduce the voltage standing wave ratio (VSWR) which can be directly
measured in this experiment:

VSWR =
Emax

Emin

=
1 + |R|
1− |R| (39)

The second observable which has to be measured is ∆z, the dispalcement of the
minima (see fig 2). By taking into account the phase shift of the reflected wave at
the metal, we can find:

δ = π − 2k∆z (40)

R =
VSWR− 1

VSWR+ 1
ei(π−2k∆z) =

VSWR− 1

VSWR+ 1
eiδ (41)

For further reading see [2] and [3].

3 Experimental Setup

3.1 Overview

In this experiment we are going to determine the complex dielectric constant of
tert-Butyl chloride at different temparatures by measuring a standing wave pattern
of microwaves.

The Klystron on the left of the experimental setup (see fig. 3) produces microwaves
(with f ≈ 10.2GHz) with an electron beam. This generates a lot of heat, therefore
the water cooling should be turned on when the Klystron is running. The wave
attenuator then decreases the intensity of the generated waves.

Klystron

water cooling

wave
attenuator

acetone
+ dry ice

tert-Butyl
chloride

VSWR
meter

slotted line

diode

Figure 3: experimental setup
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The microwaves travel to the end of the rectangular waveguide, get reflected and form
a standing wave. With the movable diode in the slotted line the voltage standing
wave ration (VSWR) at different positions can be observed, i.e. the minima can be
located.

For the first measurement, no t-Butyl chloride and acetone dry ice mixture is needed.
In this measurement, the properties of the waveguide itself are determined.

For the second measurement, the removable part of the waveguide is partially
filled with tert-Butyl chloride. The more of this chemical is used, the bigger the
displacement of the minima of the standing wave is. If too much is used, the displaced
minima cannot be assigned to the previous minima anymore. A good value for the
height of t-Butyl chloride is ≈ 0.5 cm.

3.2 How to measure VSWR and ∆z

The easiest way to measure ∆z is to first measure the absolute position of the minima
in the vacuum. To find a minimum, the dial can be used to move the diode along
the slotted line until the VSWR-meter shows a minimal amplitude, then the exact
position can be read off the vernier scale. Keep in mind that the position will be
shifted by introducing the dielectric, so do not choose minima too close to the egde
of the measuring scale. Now for every measurement with the medium the absolute
position of the minima can be measured and the differences (= ∆z) can be calculated
afterwards.

With a VSWR-meter it is hard to measure high VSWR values directly, therefore we
are going to use a sligthly different method. In the experiment without dielectrica,
the minimum of the standing wave pattern of the electric field is 0, therefore
VSWR = Emax/Emin is going to infinity. If we insert a dielectrica in the waveguide,
the value of Emin becomes finite and so does VSWR. We can now adjust the VSWR-
meter by using the buttons with steps of 10dB on the right side and rotating the
GAIN-button so that the minimum is exactly at 3.0dB. Now we can use the dial to
move the probe to find the distance ν between the two positions (left and right of
the minimum) where we have 0dB. Again, this can be done very precise by using the
Vernier scale. The VSWR-value of the minimum can then be calculated by:

VSWR =
λg

πν
(42)

4 Preparing the Measurement

First, the assistent should organize the dry ice from department of chemistry. It is
stored in a huge box from the company PanGas and can be transported easily in a
styrofoam box. Then follow this guide step-by-step:

• turn on the timer of the water cooling
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• turn on the Klystron, adjust the settings as shown in fig. 4

• turn on the SWR-meter, for settings see 5

• wait for a few minutes until the ampere-meters on the Klystrons show stable
values

• determine λg

2
by measuring the distance between two adjacent minima, use the

dial to move the probe and the vernier scale to read off the values

• calculate k = 2π
λg

• measure the absolute position of the two minima you want to observe

• use an Eppendorf pipette to fill an amount V of t-Butyl chloride into the
removable part of the waveguide, calculate thickness d = V

a·b
of the chemical,

where a and b are the dimensions of the waveguide. choose V such that
d = 0.5± 0.1 cm

• put the removable part of the waveguide back in place and fix it with the screws

• prepare the acetone and dry ice mixture in a dewar vessel (don’t use too much
dry ice, it takes very long to heat up then)

• use a lab-jack to lift the vessel from below the part of the waveguide that is
filled with tert-Butyl chloride such that the waveguide immerses a few cm into
the cooling mixture

• place the sensor of the thermometer in the cooling mixture

5 Measurement

In this experiment the complex dielectric constant should be measured between
−70◦C and −50◦C in small steps. Therefore we start with the cooling mixture which
is slightly cooler than −70◦C and wait for it to heat up. The temperature can be
read off the thermometer. Now the acutal measurement has to be performed:

• note down the current temperature

• move the probe to the first minimum you want to observe, measure ν and ∆z
as described in section 3.2

• move the probe to the second minimum, measure ν and ∆z again

This procedure has to be repeated every 0.5 or 1 degree that the cooling mixture has
heated up. If the heating rate is too high, one gets very poor measurement results.
Stop with the measurement once you reached −50◦C.

Now the experiment can be shut down, the tert-Butyl chloride can be washed down
the sink with some water. Wait for the cooling mixture (i.e. the acetone) to heat up
to room temperature, then put it carefully back in the bottle for the used acetone.
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6 Analysis

For every measurement point the following 10 steps have to be applied:

1. calculate VSWR = λg

πν

2. calculate |R| = VSWR−1
VSWR+1

3. calculate δ = π − 2 k∆z

4. calculate q = −i
k d

· 1+|R|eiδ

1−|R|eiδ

5. solve the trancendental equation tanh(z)
z

= q numerically. This can be done with
Mathematica: FindRoot[Tanh[z]/z == q, {z, x + i ∗ y}], with starting values
between 0.1+5∗i for low temperatures and 0.5+11∗i for the higer temperatures.
Alternatively the equation can be solved with MatLab by initializing a matrix
with e.g. all values between 0 + 0 ∗ i and 0.2 + 10 ∗ i and find the best fitting
matrix element.

6. calculate k2 =
z
i d

7. calculate ε1 =
Re(k2)2−Im(k2)2+(mπ

a )
2

+(nπ
b )

2

ε0µ0ω2 where a and b are the dimensions of

the waveguide and m and n are the modes of the TE-waves (in this case m = 1,
n = 0 if you choose a to be the greater dimension) and ω = 2π · f

8. caluclate ε2 =
2∗Re(k2)Im(k2)

ε0µ0ω2

9. calculate the complex dielectric constant ε = ε1 − i · ε2

7 Warnings

In this experiment we are going to use acetone and tert-Butyl chloride. Use latex
gloves when working with the chemicals and do not bring it in contact with your
eyes. Also the vapour shouldn’t be directly inhaled and if there is too much aceton
vapour in the air make sure that the windows are wide open. Aceton can solute
plastic materials, e.g. styrofoam (Styropor) or PET.

Be careful with the gaseous CO2 that sublimates out of the dry ice. Make sure that
the room is well vantilated.

Be especially careful with the cooling mixture: When getting in contact with skin it
can cause cold burns. Also, the mixture of dry ice and aceton can start to produce
bubbles and splash around if one adds too much dry ice at once.
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8 Exercises

1. Look at these questions in advance:

• How does a Klystron work?

• What is the meaning of the real and the complex part of the dielectric
constant?

2. Give a short overview of the theory

3. Measure the dielectric constant at two minima from −70◦C to −50◦C in small
steps

4. Plot for both minima the real part and the imaginary part of the dielectric
constant in a diagram

5. Discuss your results

6. At some point there is a sudden change of the dielectric constant. Can you
explain this phenomenon? (HINT: The molecule has a dipol moment and the
degrees of freedom of rotation can change with temperature, further reading
[4])

References

[1] Frank Peis, Komplexe DK von t-Butylchlorid, 1988

[2] J. D. Jackson, Classical Electrodynamics

[3] A.R. von Hippel, Dielectric Materials and Applications, 1954, p.13 et seq.

[4] Powles, Williams and Smith, Dielectric Dispersion in the Microwave Region of

Six Tetrasubstituted Methanes in the Solid State, 1952

13



Appendix

Figure 4: Settings of the Klystron

Figure 5: Settings of the SWR-meter
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